皮埃尔·德·费马个中任何一座桥都只许颠末一次

新闻是有分量的

皮埃尔·德·费马个中任何一座桥都只许颠末一次

2019-02-12 11:33栏目:传媒
TAG:

  把一个立方数分成两个立方数,把一个四次方数或一般地任何超过二的高次方数分成两个同次方数,都是不可能的,对此我肯定已经获得一个绝妙的证明,但是边上地位太窄,写不下。

  这定理可重述为:如果n是大于2的自然数的话,不存在任何正整数x、y、z能使xn+yn=zn.费马的注成了一个挑战。几世纪以来,甚至最卓越的数学家都没能作出证明或反证。

  下一节将提供另外的背景,并讨论有关费马大定理的最新消息。由于力图证明费马大定理而得到的某些发现也许比这定理本身更重要。

  研究尚未解决的数学思想,与探讨已知的东西同样有趣。这里不过是数学的未解之谜中的一点小小的样品。虽然有些问题很简单,可以讲给没有数学背景的人听,但它们的解却是难以捉摸的。

  ①只许用直尺和圆规求解的古代三大不可能作图解是:三等分一个角(把一个角分成相等的三个角)、倍立方(作一立方体,使它的体积是一给定立方体的两倍)、化圆为方(作一正方形,使它的面积与一给定圆相等)。由这三个问题刺激发展起来的几个发现是尼科米兹的蚌线、阿基米德的螺线和希庇亚斯的割圆曲线。

  ②柯尼斯堡桥问题的要求是找出一条通过柯尼斯堡七座桥的路线,其中任何一座桥都只许经过一次。欧拉在解这问题时发展了网络的概念。

  ③平行公设涉及的是确定欧拉的第五公设究竟是不是公设而非定理。试图证明这一公设的各种努力,导致了非欧几何的发现。

  欢迎访问奥数网,您还可以通过手机等移动设备查询小学试题库、小学资源库、小升初动态、重点中学、家庭教育信息等,2018小升初我们一路相伴。[点击查看]